不定積分の問題
戻る
解答
$$\int f(x)dx=「微分がf(x)となる関数」+C\qquad(Cは積分定数)$$
- $\displaystyle\int xdx=\qquad$
- $\displaystyle\int x^2dx=\qquad$
- $\displaystyle\int x^3dx=\qquad$
- $\displaystyle\int x^4dx=\qquad$
- $\displaystyle\int 1dx=\qquad$
- $\displaystyle\int \dfrac{1}{x}dx=\qquad$
- $\displaystyle\int e^xdx=\qquad$
- $\displaystyle\int \sin xdx=\qquad$
- $\displaystyle\int \cos xdx=\qquad$
- $\displaystyle\int\int xdxdx=\qquad$