複素数の問題の解答
本文に戻る
問題
$${\rm Re}\ (a+bi)=a\qquad {\rm Im}\ (a+bi)=b\qquad i^2=-1\qquad \overline{(a+bi)}=a-bi$$
$$|a+bi|=\sqrt{a^2+b^2}\qquad \dfrac{1}{a+bi}=\dfrac{a-bi}{a^2+b^2}$$
- ${\rm Re}\ (3+10i)=$$3$
- ${\rm Im}\ (1-2i)=$$-2$
- $(5+3i)+(7-2i)=$$12+i$
- $3a+4bi-(3a-4bi)=$$8bi$
- $i-5i=$$-4i$
- $(1-i)(3+2i)=$$5-i$
- $(3+2i)(3-2i)=$$13$
- $2i\cdot(-3i)=$$6$
- $\overline{1+i}=$$1-i$
- $\overline{6}=$$6$
- $\overline{-2i}=$$2i$
- $|3+4i|=$$5$
- $|-1+\sqrt{3}i|=$$2$
- $|5i|=$$5$
- $\dfrac{1}{3+i}=$$\dfrac{3}{10}-\dfrac{1}{10}i$
- $\dfrac{1}{-1-2i}=$$-\dfrac{1}{5}+\dfrac{2}{5}i$